
1

Debugging with
MicroEJ

© MicroEJ 2024

Overview of MicroEJ
Debugging Tools

2

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright law
of MicroEJ S.A. Without written permission from MicroEJ S.A., copying or sending parts of the document or the entire document
by any means to third parties is not permitted. Granted authorizations for using parts of the document or the entire document

do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Other trademarks are proprietary of their respective owners.
Java™ is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked environments. When it is used in this site without adding the “™” symbol, it includes

implementations of the technology by companies other than Sun. Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

V2.1 Jan. 2024© MICROEJ 2024

3

• Goal:

o Provide an overview of the debug tools provided to developers to debug an
application

o Illustrate the use of the debug tools

• Debug tools categories:

o Runtime & Post-Mortem Debugging Tools

o Memory Inspection Tools (debug corruption, leaks)

o Static Analysis Tools

o GUI Application Debugging Tools (bottlenecks identification, rendering
issues)

V2.1 Jan. 2024© MICROEJ 2024

OVERVIEW

4V2.1 Jan. 2024© MICROEJ 2024

DEBUGGING TOOLS OVERVIEW
TOOLS RUNTIME & POST-

MORTEM
MEMORY
INSPECTION

STATIC ANALYSIS TOOLS GUI DEBUGGING
TOOLS

Core Engine VM Dump X

Debug on Device X

Simulator Debugger X

Port Qualification Tool (PQT) X

SystemView X X X

Logging & Message Libraries X

Code Coverage X

Heap Dumper / Analyzer X

Heap Usage Monitoring X

Core Engine MEMORY integrity check X

SonarQube / Klocwork (Java/C) X

Null Analysis X

Flush Visualizer X

MWT & Widget Debug Utilities X

5

• MICROEJ SDK 5.8.1

• Applications:

o Demo Widget

o MWT samples

• VEE Port: STM32F7508-DK

• CPU: STM32F750N8H6

o 216 MHz Arm Cortex-M7 core

• ROM:

o Internal flash size: 64 KB

o External flash size: 128 Mb

• RAM:

o Internal RAM size: 340 KB

o External RAM size: 64 Mb

• Screen: 480x276 16BPP, capacitive touch

V2.1 Jan. 2024© MICROEJ 2024

ENVIRONMENT

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/tree/2.1.2

6

Runtime &
Post-Mortem

Debugging Tools

V2.1 Jan. 2024© MICROEJ 2024

7

• Tools:
o Core Engine VM Dump

o Debug on Device

o Simulator Debugger

o Port Qualification Tools (qualify a VEE Port)

o Event Tracing & Logging*

o Code Coverage*

• Example:

o Debug a deadlock in an application in the
Simulator and on Device

V2.1 Jan. 2024© MICROEJ 2024

RUNTIME & POST-MORTEM DEBUGGING TOOLS

GUI freeze when entering a page

* Tool not introduced in this presentation, visit docs.microej.com for more information.

https://docs.microej.com/en/latest/

8

• Core Engine VM Dump is a diagnose tool to investigate unexpected behavior occurring on
the target.

• When?
o Call the LLMJVM_dump() method in the Core Engine task at runtime to diagnose unexpected

behavior (ex: UI freeze).

o Call the LLMJVM_dump() as a last resort in a fault handler to get a snapshot of the Core Engine, to
check if the issue comes from a LLAPI or the underlying C code.

• What?
o Prints the state of the MicroEJ Core Engine to the standard output stream.

o For each Java thread, the Java stack trace, the name, the state and the priority are printed.

• Requirements:
o A way to read stdout (usually UART).

V2.1 Jan. 2024© MICROEJ 2024

CORE ENGINE VM DUMP (1/3)

https://docs.microej.com/en/latest/PlatformDeveloperGuide/platformConcepts.html#principle

9

• Trigger the LLMJVM Dump from the
debugger (IAR):

HOW-TO?

• LLMJVM Dump triggered from User button
press:

V2.1 Jan. 2024© MICROEJ 2024

CORE ENGINE VM DUMP (2/3)

10

=================================== VM Dump ====================================
Java threads count: 3
Peak java threads count: 3
Total created java threads: 4
Last executed native function: 0x9014DDFB
Last executed external hook function: 0x00000000
State: idle, not notified
--
Java Thread[1794]
name="Thread1" prio=5 state=MONITOR_QUEUED max_java_stack=492 current_java_stack=183
Locked on: java/lang/Object@0xC0081C4C (owned by thread[1281])

java/lang/Thread@0xC0082150:
 at com/microej/demo/widget/animatedimage/widget/AnimatedImage$1.run(AnimatedImage.java:190)
 Object References:
 - com/microej/demo/widget/animatedimage/widget/AnimatedImage$1@0xC00821B0
 - java/lang/Object@0xC0081C48
 - java/lang/Object@0xC0081C4C

--
Java Thread[1281]
name="UIPump" prio=5 state=MONITOR_QUEUED max_java_stack=1296 current_java_stack=850
Locked on: java/lang/Object@0xC0081C48 (owned by thread[1794])

java/lang/Thread@0xC008047C:
 at com/microej/demo/widget/animatedimage/widget/AnimatedImage.renderContent(AnimatedImage.java:233)
 Object References:
 - com/microej/demo/widget/animatedimage/widget/AnimatedImage@0xC0081C2C
 - ej/microui/display/GraphicsContext@0xC008042C
 - java/lang/Object@0xC0081C4C
 - java/lang/Object@0xC0081C48

EXAMPLE OF DUMP

• Dead lock is identified in the stack
trace, lock between threads “Thread1”
and “UI Pump”

• The UI Tread (UI Pump) is locked
→ GUI Freeze

• Use the Stack Trace Reader to decode
the stack trace

V2.1 Jan. 2024© MICROEJ 2024

CORE ENGINE VM DUMP (3/3)

https://docs.microej.com/en/latest/SDKUserGuide/stackTraceReader.html

11

DEBUG ON SIMULATOR

• Use of JDWP (Java Debug Wire Protocol) to use
Eclipse debugger

• Use mocks to simulate and debug corner cases
of the target

• Debugger features:

o Breakpoints

o Step-by-step execution

o Variables and fields value monitoring

o Thread execution stacks list

DEBUG ON DEVICE

• Use of JDWP (Java Debug Wire Protocol) to use
Eclipse debugger

• Need to setup the a VEE Debugger Proxy

• Postmortem debug from a snapshot of the
memory

• Debugger features:

o Breakpoints

o Step-by-step execution (planned)

o Variables and fields value monitoring

o Thread execution stacks list

V2.1 Jan. 2024© MICROEJ 2024

USING THE DEBUGGER (1/4)

Note: import the Foundation Library Sources to the debugger to get the exact source code which
is executed.

https://docs.microej.com/en/latest/SDKUserGuide/debug.html#foundation-library-sources

12

DEBUG ON DEVICE

• VEE Debugger Proxy principle:

• Available since Architecture 8.1

• No VEE Port update required

• Steps:

1. Generate a VEE memory dump script for the
target / toolchain

2. Run the application Executable on target

3. Dump the memory of the running Executable
using the C Debugger using the VEE memory
dump script

4. Run the VEE Debugger Proxy in a Command
Prompt

5. In MICROEJ SDK, run a Remote Java Application
Debugging session

V2.1 Jan. 2024© MICROEJ 2024

USING THE DEBUGGER (2/4)

13

DEBUG ON DEVICE

• To debug an application on device, first run the VEE Debugger Proxy, and run a Remote Java
Application launch:

V2.1 Jan. 2024© MICROEJ 2024

USING THE DEBUGGER (3/4)

14

DEBUG ON SIMULATOR

• To debug an application on Simulator, select it in the left panel then right-click and select
Debug As > MicroEJ Application:

V2.1 Jan. 2024© MICROEJ 2024

USING THE DEBUGGER (4/4)

15

• The Port Qualification Tool (PQT) project provides the tools
required to validate each component of a MicroEJ VEE Port.

• After porting or adding a Foundation Library to a MicroEJ VEE
Port, it is necessary to validate its integration.

• For each Low Level API, an Abstraction Layer implementation is
required. The validation of the Abstraction Layer implementation
is performed by running tests at two-levels:

o In C, by calling Low Level APIs (usually manually).

o In Java, by calling Foundation Library APIs (usually automatically
using Platform Test Suite).

• PQT tests can be extended by the developer to support custom
Foundation Libraries.

• Please refer to the Platform Qualification documentation for more
information.

V2.1 Jan. 2024© MICROEJ 2024

PORT QUALIFICATION TOOL (1/2)

https://docs.microej.com/en/latest/glossary.html#term-Foundation-Library
https://docs.microej.com/en/latest/PlatformDeveloperGuide/platformQualification.html#platform-testsuite
https://docs.microej.com/en/latest/PlatformDeveloperGuide/platformQualification.html#platform-qualification

16

• PQT tests are provided with a Test Suite
project, to run tests automatically (CI or
locally)
→ Agility in the development flow

• A Test Suite contains one or more tests.
For each test, the Test Suite Engine will:

o Build a MicroEJ Firmware for the test.

o Program and Run the MicroEJ
Firmware onto the device.

o Retrieve the execution traces.

o Analyze the traces to determine
whether the test has PASSED or
FAILED.

o Append the result to the Test Report.

o Repeat until all tests of the Test Suite
have been executed.

V2.1 Jan. 2024© MICROEJ 2024

PORT QUALIFICATION TOOL (2/2)

VEE Port Test Suite on Device Overview

17

1. PQT: validate the vertical integration: Foundation Library > Abstraction Layer > C Library >
Driver

2. Event Tracing & Logging: instrument the application with debug logs

3. Core Engine VM Dump: diagnosis tool to display the state of the MicroEJ Runtime and the
MicroEJ threads on target (name, priority, stack trace, etc.)

4. Debugger (on device & simulator): analysis of an applicative issue

V2.1 Jan. 2024© MICROEJ 2024

KEY TAKEWAYS

18

Memory Inspection
Tools

V2.1 Jan. 2024© MICROEJ 2024

19

• Tools:
o Heap Dumper & Heap Analyzer

o Core Engine Memory integrity check

o Heap Usage Monitoring Tool*

• Examples:

o Investigate memory leaks

o Detect memory corruption of the
Java heap

V2.1 Jan. 2024© MICROEJ 2024

MEMORY INSPECTION TOOLS

Out Of Memory exception in a GUI
application

* Tool not introduced in this presentation, visit docs.microej.com for more information.

https://docs.microej.com/en/latest/

20

• Heap Dumper is a tool that takes a snapshot of the heap.
Generated files (.heap extension) are available in the application output folder.

• Heap Analyzer is a tool that allows to inspect the heap dumps.
It provides the following features:

o Memory leaks detection

o Objects instances browse

o Heap usage optimization (using immortal or immutable objects)

o Comparison between Heap Dumps

• To generate .heap dump files, System.gc() must be called explicitly in the application code.

• .heap dump files can be generated in simulation and also dumped from the device.

V2.1 Jan. 2024© MICROEJ 2024

HEAP DUMPER & HEAP ANALYZER (1/3)

21

• Heap Compare between .heap-3 and .heap-4:

Guidelines:

• Lots of new objects have been
created (691 new instances)

• Use the compare by content
option to discard objects that
moved but have the same content

• Look for new objects that can have
an impact (Thread, Timer, Page,
Widget, StyleSheet)

→ knowledge of the application
required, need to understand the
objects hierarchy

• Once an object has been picked,
look its parent in the Instance
Browser

V2.1 Jan. 2024© MICROEJ 2024

HEAP DUMPER & HEAP ANALYZER (2/3)

New Timer Instance referenced from
AnimatedCircularDottedProgress

class

22

ROOT CAUSE ANALYSIS

• New Timer instance created each time the
CircularDottedProgressPage is shown:

→Memory leak is due to the useless Timer
instances keeping a reference on the widget
AnimatedCircularDottedProgress
Also, the TimerTask is never canceled

FIX

• Retrieve a global Timer instance (defined at
application startup)

• Cancel the TimerTask once the
CircularDottedProgressPage is hidden

V2.1 Jan. 2024© MICROEJ 2024

HEAP DUMPER & HEAP ANALYZER (3/3)

23

• Check the internal memory structure integrity of the Core Engine with the LLMJVM_checkIntegrity API
to detect memory corruptions in native functions.
This feature is for Applications deployed on hardware devices:

o If an integrity error is detected, the LLMJVM_on_CheckIntegrity_error hook is called and this
method returns 0.

o If no integrity error is detected, a non-zero checksum is returned.

• Native corruption example of Core Engine memory:

V2.1 Jan. 2024© MICROEJ 2024

CORE ENGINE MEMORY INTEGRITY CHECK

https://docs.microej.com/en/latest/PlatformDeveloperGuide/coreEngine.html#core-engine-check-integrity

24

• Heap Dumper:

• Generates heap dumps (.heap file) on System.gc() execution

• Heap Analyzer features:

• Compare: compares two heap dumps, showing which objects were created, or garbage
collected, or have changed values
→ useful for memory leaks detection

• Heap Viewer: shows which instances are in the heap, when they were created, and attempts to
identify problematic areas
→ useful for memory optimization

• Core Engine Memory Integrity Check: detect memory corruptions in native functions.

• Heap Usage Monitoring Tool: estimate the heap requirements of an application.

V2.1 Jan. 2024© MICROEJ 2024

KEY TAKEWAYS

25

Debugging a GUI
Application

V2.1 Jan. 2024© MICROEJ 2024

26

Identifying & Debugging
Performance Bottlenecks

V2.1 Jan. 2024© MICROEJ 2024

27

• Tools:
• FlushVisualizer

• SystemView

• Example:

• Identify performance bottlenecks that
prevents smooth animations

V2.1 Jan. 2024© MICROEJ 2024

IDENTIFYING & DEBUGGING BOTTLENECKS

Sliding animation between 2 pages

Animated images

28

• The Flush Visualizer shows the pixel surface drawn between two MicroUI frame buffer flushes.

• A perfect application has 100% of its display area drawn. A total area drawn between 100% to 200%
is the norm in practice because widgets often overlap.

V2.1 Jan. 2024© MICROEJ 2024

FLUSH VISUALIZER (1/2)

29

• Drawings are done twice once the animation is
over:

ROOT CAUSE ANALYSIS FIX

• Run the updatePosition() code only when the
animation is running:

V2.1 Jan. 2024© MICROEJ 2024

FLUSH VISUALIZER (2/2)

updatePosition()

restore()

Next step: investigate the 2 first fillRectangle() redrawing ~200% of the screen

30

• The SystemView tool can be used to trace the application execution and identify performance bottlenecks.

• Use case: measure the rendering time of images:

• Rendering duration for the 3 images: 13.9ms

• All the images are drawn using the CPU (UIPump thread) → Hardware accelerator can be used to offload the
CPU (e.g. SMT32 DMA2D accelerator)

V2.1 Jan. 2024© MICROEJ 2024

SYSTEM VIEW (1/2)

Background:
4.5ms

Logo:
1.7ms

Mascot: 7.7ms

Custom trace event to track the
execution of the render() method

render()
starts

render()
stops

31

• Implement the UI_DRAWING_drawImage function in the BSP to use the DMA2D accelerator to perform the image
drawing:

• Rendering duration for the 3 images : 6.2ms (45% faster compared to the software implementation)

• Blending / Drawing of Logo and Mascot images is accelerated thanks to DMA2D

• CPU is offloaded during DMA2D operations (Idle state) → other VEE or RTOS threads can run at this time

V2.1 Jan. 2024© MICROEJ 2024

SYSTEM VIEW (2/2)

Background:
4.5ms

Logo:
0.6ms

Mascot:
1.1ms

render()
starts

render()
stops

Implementation of UI_DRAWING_drawImage using DMA2D

32

Debugging Rendering Issues

V2.1 Jan. 2024© MICROEJ 2024

33

• Tools:

• MWT and Widget Debug Utilities

• Example:

• Debug the rendering issue of a page

V2.1 Jan. 2024© MICROEJ 2024

IDENTIFY GUI RENDERING ISSUES

Rendering issue when entering an application page

34

The Widget Library provides several Debug Utilities to investigate and troubleshoot GUI
applications:

• Print the hierarchy of widgets and styles

• Print the path to a widget

• Count the number of widgets or containers

• Count the maximum depth of a hierarchy

• Print the bounds of a widget

• Print the bounds of all the widgets in a hierarchy

V2.1 Jan. 2024© MICROEJ 2024

WIDGET DEBUG UTILITIES (1/2)

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/widget.html#widget-library-debug-utilities

35

ROOT CAUSE ANALYSIS

• The background is not redrawn when the page
shows up

• Print the style hierarchy of the Desktop to get
more information:

→ There are only transparent backgrounds used in
the widget hierarchy

FIX

• Check the default StyleSheet configuration:

→ The default style is providing a transparent background.

• The CircularSlider page is not setting the background neither:

• Fix proposals:

• Set an opaque background in the default StyleSheet (if
possible)

• Set the background in the StyleSheet of the CircularSlider page
(at least on the top level widget of the CircularSlider page
→ SimpleDock) V2.1 Jan. 2024© MICROEJ 2024

WIDGET DEBUG UTILITIES (2/2)

36

HIGHLIGHTING THE BOUNDS OF THE WIDGETS

• When designing a UI, it can be pretty convenient to highlight the bounds of each widget. Here are some
cases where it helps:

• Verify if the layout fits the expected design

• Set the outlines (margin, padding, border)

• Check the alignment of the widget content inside its bounds

• Example with the Home page and the Wheel page:

V2.1 Jan. 2024© MICROEJ 2024

MWT DEBUG UTILITIES (1/3)

37

MONITORING THE RENDER OPERATIONS

• It may not be obvious what/how exactly the UI is rendered, especially if:

• A widget is re-rendered from a distant part of the application code

• A specific RenderPolicy is used (e.g. OverlapRenderPolicy)

• The Widget library provides a default monitor implementation that prints the operations on the
standard output.

• The logs produced also contain information about what is rendered (widget and area) and what code
requested the rendering.

• Example with the RadioButton page (application logs after click):

V2.1 Jan. 2024© MICROEJ 2024

MWT DEBUG UTILITIES (2/3)

rendermonitor@ INFO: Render requested on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {0,0 87x25} of {221,116 87x25} by
com.microej.demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:47)
rendermonitor@ INFO: Render requested on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {0,0 87x25} of {221,166 87x25} by
com.microej.demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:50)
rendermonitor@ INFO: Render executed on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {-221,-116 87x25} of {221,116 87x25}
rendermonitor@ INFO: Render executed on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {-221,-141 87x25} of {221,141 87x25}

Click

38

• Since an animator ticks its animations as often as possible, the animator may take 100% CPU usage if
none of its animations requests a render.

• MWT notifies when none of the animations has requested a render during an animator tick:

• requestRender() is only executed when the widget is moving, or if the user is manipulating it.
The tick() method loops indefinitely if there is no animation to do.

→ Stop the animation when not required to save CPU time

MONITORING THE ANIMATORS

V2.1 Jan. 2024© MICROEJ 2024

MWT DEBUG UTILITIES (3/3)

animatormonitor WARNING: None of the animations has requested a render during the

animator tick. Animations list:

[com.microej.demo.widget.carousel.widget.Carousel$1@2d6d4]

39

• SystemView: live analysis of an application with a cross view between RTOS & VEE threads
→ bottlenecks analysis & profiling

• Flush Visualizer: show the pixel surface drawn between two MicroUI frame buffer flushes
→ avoid useless redraws, improve performances

• MWT & Widget Debug utilities: detect issues with the widget hierarchy
→ debug rendering issues

V2.1 Jan. 2024© MICROEJ 2024

KEY TAKEWAYS

40

Static Analysis
Tools

V2.1 Jan. 2024© MICROEJ 2024

41

NULL ANALYSIS

Static analysis tools are helpful allies to prevent several classes of bugs.

• Use the Null Analysis tool to detect and prevent NullPointerException, one of the most common causes
of runtime failure of Java programs.

V2.1 Jan. 2024© MICROEJ 2024

STATIC ANALYSIS TOOLS (1/3)

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/nullAnalysis.html#null-analysis
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

42

SONARQUBE

• SonarQube™ is an open source platform for continuous inspection of code quality. SonarQube offers
reports on duplicated code, coding standards, unit tests, code coverage, code complexity, potential
bugs, comments, and architecture.

• SonarQube can be integrated with CI tools to monitor code quality during the project life.

• To set it up on your MicroEJ application project, please refer to this documentation. (configures the set
of rules relevant to the context of MicroEJ Application development)

V2.1 Jan. 2024© MICROEJ 2024

STATIC ANALYSIS TOOLS (2/3)

SonarQube code analysis
performed inside MICROEJ SDK

SonarQube code analysis
performed on SonarQube server

https://docs.microej.com/en/latest/Tutorials/tutorialImproveCodeQuality.html#sonar-code-analysis
https://github.com/MicroEJ/ExampleTool-Sonar

43

KLOCWORK

• Klocwork is another code analysis platform that
can be integrated to MICROEJ SDK.
Documentation can be found here.

• Klocwork can be integrated with CI tools to monitor
code quality during the project life.

V2.1 Jan. 2024© MICROEJ 2024

STATIC ANALYSIS TOOLS (3/3)

Klocwork code analysis performed on Klocwork
server

Klocwork code analysis performed inside
MICROEJ SDK

https://docs.roguewave.com/en/klocwork/current/

44

THANK YOU
f o r y o u r a t t e n t i o n !

	Slide 1
	Slide 2
	Slide 3: OVERVIEW
	Slide 4: Debugging Tools overview
	Slide 5: Environment
	Slide 6: Runtime & Post-Mortem Debugging Tools
	Slide 7: Runtime & Post-Mortem Debugging Tools
	Slide 8: Core Engine VM Dump (1/3)
	Slide 9: Core Engine VM Dump (2/3)
	Slide 10: Core Engine VM Dump (3/3)
	Slide 11: Using the debugger (1/4)
	Slide 12: Using the debugger (2/4)
	Slide 13: Using the debugger (3/4)
	Slide 14: Using the debugger (4/4)
	Slide 15: Port Qualification Tool (1/2)
	Slide 16: Port Qualification Tool (2/2)
	Slide 17: Key Takeways
	Slide 18: Memory Inspection Tools
	Slide 19: Memory Inspection Tools
	Slide 20: Heap Dumper & Heap Analyzer (1/3)
	Slide 21: Heap Dumper & Heap Analyzer (2/3)
	Slide 22: Heap Dumper & Heap Analyzer (3/3)
	Slide 23: Core Engine MEMORY integrity check
	Slide 24: Key takeways
	Slide 25: Debugging a GUI Application
	Slide 26: Identifying & Debugging Performance Bottlenecks
	Slide 27: Identifying & Debugging Bottlenecks
	Slide 28: Flush Visualizer (1/2)
	Slide 29: Flush Visualizer (2/2)
	Slide 30: SYSTEM VIEW (1/2)
	Slide 31: SYSTEM VIEW (2/2)
	Slide 32: Debugging Rendering Issues
	Slide 33: Identify GUI Rendering Issues
	Slide 34: Widget Debug Utilities (1/2)
	Slide 35: Widget Debug Utilities (2/2)
	Slide 36: MWT Debug Utilities (1/3)
	Slide 37: MWT Debug Utilities (2/3)
	Slide 38: MWT Debug Utilities (3/3)
	Slide 39: Key takeways
	Slide 40: Static Analysis Tools
	Slide 41: Static Analysis Tools (1/3)
	Slide 42: Static Analysis Tools (2/3)
	Slide 43: Static Analysis Tools (3/3)
	Slide 44

